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Primary and secondary extinction are studied using the dynamical theory of X-rays diffracted by imper- 
fect crystals. The transition from dynamical to kinematical scattering is explained in terms of funda- 
mental processes in diffraction. Contrary to existing extinction theories, where the intensities diffracted 
dynamically by single coherent domains of a mosaic are combined using an ad hoe assumption of 
mosaic distributions, the present theory permits the dynamical amp6tudes to change in response to 
disturbances of the dynamical interactions by imperfections. Neither the mosaic block model nor the 
statistical treatment of imperfections is used. The extinction of diffracted intensities is thereby treated as 
caused solely by inhomogeneous strains in a single coherent domain. 

1. Introduction 

The extinction of diffracted X-rays within a single and 
ideally perfect crystal block is called primary extinction 
(Darwin, 1914 a, b; James 1954). A decrease in primary 
extinction is described by the fact that a crystal becomes 
slightly less perfect, without using the mosaic block con- 
cept for representing such an imperfect crystal. A crystal, 
which is neither ideally perfect nor ideally imperfect, 
diffracts X-rays with an intensity lying somewhere 
between the two values expected from the dynamical 
and from the kinematical theory of diffraction. This 
phenomenon is caused by secondary extinction (Dar- 
win, 1914a, b; James, 1954). 

To understand secondary extinction phenomeno- 
logically, it has been necessary so far to replace a 
crystal by mosaic blocks. Each block slightly mis- 
oriented mutually is assumed to be a perfect crystal 
which may have lattice constants different from those 
in other blocks. In real crystals where most imperfec- 
tions are dislocations, defects, and impurities, it is the 
existence of inhomogeneous strains in the crystal that 
really affects the Bragg diffraction processes. Mosaic 
block models are too primitive to approximate real 
situations. It is also well known that primary and 
secondary extinction in general are inseparable in real 
crystals. The purpose of this paper is to study some 
fundamental aspects of extinction in X-ray diffraction 
from a new viewpoint, one based on a recently formu- 
lated dynamical theory of X-rays diffracted by im- 
perfect crystals (Kuriyama, 1967; 1970). In the present 
treatment, primary and secondary extinctions always 
coexist, as one expects in real crystals. Since a decrease 
in extinction must be described by physical quantities 
characterizing imperfections, the mosaic block concept 
is not used to represent an imperfect crystal. 

Much of the physics involved in diffraction from 
an imperfect crystal has been discussed in a paper by 

one of the authors (Kuriyama, 1969). However, the 
change diffracted intensities from the dynamical to the 
kinematical value has been only discussed qualitatively. 
The present paper provides a quantitative discussion 
on this subject. 

2. Scattering amplitude of an imperfect crystal 

In the scattering formalism of modern quantum 
mechanics, the scattering amplitude for diffracted 
X-rays is given by the probability amplitude of a 
photon in the wave packet state [k, v; R; in) to make 
a transition to the state [k' ,v ' ,R';  out), where k is 
momentum, o)=lkl=2zc/2 is energy (with c=h=l) ,  
v the polarization direction of the photon, R is the 
center position of the X-ray beam on the crystal, and 
the primes indicate those quantities for outgoing 
waves (Ashkin & Kuriyama, 1966). When calculated 
for an imperfect crystal* (Kuriyama, 1967, 1970), 
the scattering amplitude, ( k ' v ' R ' ;  out [kvR;  in) 
- ( k ' R ' [ S [ k R )  (with v and v' suppressed), consists 
of four terms (Kuriyama, 1969). The first term is es- 
sentially equivalent in form to the electric field inten- 
sity of radiation outside the crystal in the ordinary 
dynamical theory for an absorbing perfect crystal, 
while the other terms do not have a counterpart in the 
ordinary dynamical theory. For convenience we group 
these other three terms into one and call them the 
extinction term. This term vanishes when the crystal 
is perfect. 

The extinction term cannot be derived rigorously 
by the ordinary dynamical theory or its extension. It 
is for this reason that a correct treatment by a modern 

* In the Appendix, an explicit expression of the scattering 
amplitude is given of a crystal undergoing an ideal thickness 
vibration. It is almost similar in form to that of a crystal having 
unspecified imperfections. To follow the discussion in this sec- 
tion, it may be helpful to refer to that expression. 
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scattering formalism has been required for an imperfect 
crystal. In an imperfect crystal the periodic spatial 
translational invariance does not hold, that i s f ( r ) e f ( r  
+1), where 1 is the lattice vector. Since the ordinary 
dynamical theory requires this invariance, it is obvious 
that any attempted extension of the theory fails to pro- 
duce the extinction term rigorously. In other words, the 
polarizability of the crystal, which is to the lowest 
order proportional to the charge distribution, o(r), can- 
not be represented by a single Fourier series: 

0(r)= ~ o(K) exp (i K.  r), 
K 

where K is 2re times a reciprocal lattice vector. It should 
be at least represented by a single Fourier integral. 
However, the modern technique for scattering prob- 
lems, which deals with propagation of particles in 
matter, demands that the polarizability should be a 
non-local function and represented by a double Fourier 
integral (Kuriyama, 1967). This leads to the produc- 
tion of diffracted beams, not only in the Bragg-dif- 
fracted (by a perfect crystal) direction but in any 
direction. These dynamically diffracted waves cannot 
be described by a Bloch wave function, contrary to 
the treatment in ordinary dynamical theory. 

One might think, however, that for slightly distorted 
crystals the single Fourier series expansion of the 
polarizability would still be a good approximation if 
the Fourier coefficients were modified. In the modified 
expansion the 'Fourier' coefficients would be given by 
a slowly varying function of the position. Such a 
modified Fourier expansion would approximate the 
change in polarizability by an amplitude modulation; it 
could not provide any phase modulation. However, in 
a real imperfect crystal which does not have periodic 
translational invariance, the (classical) polarizability 
must be expressed by a Fourier integral; that is, the 
Fourier coefficients, 0(k), exist not only for k = K, but 
for any arbitrary k. It is clear, therefore, that the 
polarizability of an imperfect crystal should be con- 
sidered that of the perfect crystal, but with phase 
modulation. As we know from a Taylor expansion of 
such a phase modulated function, an approximation 
of phase modulation by amplitude modulation is not 
only poor, but is sometimes unable to reproduce real 
physical situations. This argument provides the prin- 
cipal reason why an extension of ordinary dynamical 
theory is not sufficient to produce the extinction term 
rigorously (especially when distortions become large). 

Next we turn to the physical meaning of the first 
term and the extinction term. Imperfections affect the 
first term in two ways (Kuriyama, 1969): the one is to 
change the effective absorption coefficient (here we 
consider the Laue geometry), and the other is to 
modify the Bragg diffracted propagators, which may 
be considered classically to be the electric field inten- 
sity of radiation in matter. The latter modification, in 
effect, causes narrowing of the dynamical diffraction 
range (Kuriyama, 1969). This means that the Bragg 

diffracted propagators behave like nearly free field 
propagators (as seen in the kinematical scattering) re- 
suiting in an increase of the 'integrated' intensity 
contributed only from the first term (with the change 
in the effective absorption coefficient neglected). The 
modified Bragg diffracted propagator therefore causes 
a decrease in primary extinction as the crystal becomes 
less perfect. However, the first term in the scattering 
amplitude is not the sole term for primary extinction. 
Since the Bragg diffracted propagator is a basic quantity 
describing how a photon propagates in the material 
when the Bragg conditions are nearly satisfied, it ap- 
pears also in the extinction term. 

When the crystal becomes far less perfect, the ex- 
tinction term becomes dominant, and therefore must 
be closely connected to secondary extinction. If one 
wishes to use the dispersion surface diagram, the ex- 
tinction term involves a transition (jump) of a tie point 
from one branch (mode) to another. The frequency of 
the transition is determined by a set of actual (dis- 
placed) atomic positions in the crystal volume irradiated 
by the incident X-ray beam and by the modified Bragg 
diffracted propagators associated with the tie points 
on both branches (modes). The extinction term as well 
as the first term have been obtained in terms of atomic 
displacements in the crystal (Kuriyama, 1967, 1968, 
1969). Since atomic displacements vary depending 
upon the types of imperfections, it is not easy to 
calculate scattering amplitudes for various types of 
imperfections. 

The Fourier transforms of the atomic displacements 
can be uniquely determined for various types and ar- 
rangements of imperfections [see for instance, Mura 
(1964) for the continuum theory, Matsubara (1952) 
and Krivoglaz (1959) for the atomistic theory]. As 
discussed above, crystal imperfection essentially causes 
phase modulations in the generalized polarizability of 
the crystal. One might therefore conjecture that in 
diffraction problems it would be best to deal with 
atomic displacements by means of Fourier transforms. 
In fact, the fundamental processes in diffraction can 
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Fig. 1. Change of the diffracted intensity (counts.min-1) as a 
function of the driving electric current (mA) for piezoelectric 
vibrations (Haruta, 1967). 
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be treated in terms of such Fourier transforms regard- 
less of the specific type of imperfections (Kuriyama, 
1969). 

There still remain some complications in studying 
the properties of the scattering amplitude in practice. 
These are: (1) the complex functional form of the 
Fourier transforms for real imperfections, (2) the finite 
incident beam size which emphasizes the local be- 
havior of the imperfections (Kuriyama, 1968, 1969) 
and (3) the superposition of different modes in the 
Fourier expansion of the atomic displacements. If 
these complications could be somehow eliminated 
without consequent loss of generality, the fundamental 
role of the extinction term would be clarified. We next 
consider one physical problem which provides a pos- 
sibility for eliminating such complications. 

3. Basic diffraction processes for extinction 

For the purpose of studying the phase modulation 
produced by inhomogeneous strains, such as those 
associated with imperfections, we shall derive in this 
section the extinction effects produced by piezoelectric 
vibrations. In these vibrations the atoms are displaced 
from their ideal positions in a well-defined and control- 
lable fashion. It is then expected that the intensity of 
X-rays diffracted by the crystal undergoing piezo- 
electric vibrations will change as a function of the 
vibrational amplitude. Recently, Haruta (1967) showed 
experimentally how the diffracted intensity changed as 
the driving electric current for piezoelectric vibrations 
increased. His result is reproduced in Fig. 1. This is a 
manifestation of the secondary extinction in diffraction. 

Because the change in intensity can be studied 
quantitatively as a function of controllable lattice 
distortions, X-ray diffraction from a vibrating crystal 
allows a quantitative study of extinction. Throughout 
this paper an ideal thickness vibration is treated ex- 
plicitly. The displacements of the atoms are given by 

u(lz)=Aq sin (q. 1 -~q)  (3.1) 

with 

q t = 0 ,  (3.2) 

where the z axis is in the direction of the thickness L, 1 
is a lattice vector in a perfect crystal, and a subscript t 
indicates the projection onto the X-ray entrance 
surface of the crystal. In so doing, the atomic displace- 
ments become independent of the lateral coordinates 
in a crystal plate of infinite lateral dimension. In this 
vibration diffraction is independent of the entry point 
of the incident X-rays. It is therefore sufficient to 
consider a plane wave incident on the crystal. The 
scattering amplitude is now given by (k ' lS lk)  
without R and R'. 

It is convenient in the following discussion to express 
some quantities necessary for the scattering amplitude 
in terms of the experimental variables which define the 
incident angle and the observation angles with ref- 

erence to the Bragg angle. A reciprocal lattice point H 
is very close to the Ewald sphere. For the photons in 
the initial state (the incoming X-rays) the deviation 
from the Bragg condition is determined by the variable 

2e(k) = k 2 - ( k + H ) 2 +  ( 1 -  r)v(0) (3.3) 

_2lkl 2 sin 20BAO~+(1--z)v(O), (3.4) 

where z = 1 + (Hzlkz) is a factor determining the asym- 
metrical geometry of reflection, v(O) is related to the 
complex refractive index of the crystal, and AO, is the 
angular deviation of the incident X-ray beam from the 
Bragg angle OB defined with respect to the diffracting 
plane. 

In a similar way the deviation from the Bragg peak 
angle for the final states is determined by 

2r/(k) = [:2- (~, + H)2 + (1 - r)v(0) (3.5) 

_21[I 2 sin 20BAOI+(1--v)v(0), (3"6) 

where, for convenience, 

k ' = [ + H ,  (3.7) 

and A0I is the angular deviation of the observation 
direction from the Bragg angle. Using the variable 
(3.4) for the initial state we obtain the solutions, ~ ,  
to a dispersion equation for the initial state* 

1 [v(0)+ 1 {e(k)+(_l)~R(k)} ] (3.8) ~¢-kz= 2kz T 

where 

R(k)=  l/(e(k)}2+-~[Jo(H.Aa)]2v(+H)v(-H) (3.9) 

and the mode with i=  1 is the anomalous transmission 
mode while the mode with i=2  is the anomalous 
(strong) absorption mode. The solutions, fl,  to the 
dispersion equation in the final states (outgoing X-rays) 
is given by the same form as (3.8) with fl ,  ~, and r/(k) 
replacing ~, k and e(k) respectively. 

The scattering amplitude always contains the energy 
and the momentum conservation rules, the latter of 
which is sometimes implicit (Kuriyama, 1967). When 
the crystal is undergoing an ideal thickness vibration 
(qt=0), the conservation rules are given by the two 
delta functions, one of which manifests the energy 
conservation rule while the other gives the same un- 
modified Bragg condition as expected in a perfect 
crystal (Kuriyama & Miyakawa, 1969). The momenta 
of the photons in the final states must satisfy the 
relation 

k't = kt + Kt,  (3" 10) 

* According to the usual terminology the dispersion equa- 
tions define the possible X-ray modes in the unbounded crys- 
tal. Their solution is the set of wave-vectors from an arbitrary 
tie point on the surface of dispersion to the reciprocal lattice 
points. However, what we call here a dispersion equation for a 
specific state contains the selection of solutions of this set 
brought in by the existence of a crystal surface and an incident 
beam. 
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with K--0 and H to give nonvanishing scattering am- 
plitude. Comparing equation (3.10) with (3.7) we 
obtain 

[~=k (for an ideal thickness vibration). (3.11) 

It then follows that 

r/(k) = e(k), (3.12) 

and 

~i= l  = f l j = l  ; ~=2  =fl~=2. (3" 13) 

From the scattering amplitude of a crystal under- 
going the ideal thickness vibration (Kuriyama & 
Miyakawa, 1969), the diffracted (or the transmitted) 
intensity for an incoming plane wave is obtained (see 
Appendix): 

I S  (o)( i)12 J r  I S  (1 ) (1 ,2 ) i  2 Jr IS (1)(2,1 )l 2 
i 

+ Interference terms, (3-14) 
where 

IS(a)(i,j)lZ= LZ[ao(O)v( + H)12 

x [{cos (H.  Aq)-J0(H. Aq)}2[ 

+ sin 2 (H.  Aa)]IFH-K F.  exp [-2Im{o~j-kz}L]. 
(3.15) 

Here v(K) is the Fourier transform of modified po- 
larizability and J0 is the Bessel function of zero order. 
The exact form of aij will be given by (3-22) The 
quantities F K are called the dynamical field functions 
which are obtained from the modified Bragg diffracted 
propagators. The explicit forms are written 

1 e(k) 
Fo(kt;i)= ~- [  1 - ( - 1 ) ' / ~ ( ~ ]  (3"16) 

Fn(kt;i) - ( -  1) ~ Jo(H. Aq)v(Jr H) 
2 R(k) (3.17) 

In equation (3.15) the explicit expression is given only 
to the terms which are expected to be important for 
the extinction effect. It is worth noting that S(1)(1,2) 
gives the same value as S(a) (2,1) if the sign of e is changed, 
except for the dependence of the effective absorption 
coefficients, 2Im{0cj}, on the e value. 

In numerical calculations of the intensity the dimen- 
sionless quantity x is chosen as a variable instead of 
the e(k): 

x=[rv(JrH)v(-H)] -1/2 e(k). (3"18) 

Another variable H .  A a, instead of Aq alone, is denoted 
by y and used to represent the degree of crystal imper- 
fection.* Since IS(a)(1,2)[ z and 1S(1)(2,1)12 are comple- 
mentary, either one of them, when studied as a func- 

* The word 'imperfection' here refers to the amount  of 
inhomogeneous strain in the crystal lattice and is not to be 
confused with topological 'lattice imperfections' such as vacan- 
cies and dislocations, which however can be detected through 
their (inhomogeneous) strain fields. 

tion of those two variables, is sufficient to give a 
picture of the intensity behavior. We also omit the 
interference terms in the present discussion. 

The quantities v(0) and v(+H),  being complex, 
produce the imaginary parts of the dynamical field 
functions. It is due to the presence of absorption that 
the values of v(0) and v(+ H) are complex, and con- 
sequently topographic images taken from imperfect 

.<:: :. r I [ I 

L 
0 10 

Level of 
dynamical intensity 

J 
20 30 40  

Y 
(a) 

1 i 1 i 

............ x=3-O 
/'"'"-....... . . . .  x:l-o 

. . . . . .  x :O '8  
:" \ . . . . . .  x=0-6 

i °:4 
,x o.o 

/ / / . "  / -~ Li:Veelm°:,ca i in t  e n sity 

/ / / /  / '2\ P. . / /  / / "  

.,//7,, 
i q ;  / ! ~ \ ~ . ' ~ : i l  - !/!;! I /" : ".~ \~_~1 / 

/ /  . . /  
_ 

/ I / / /  
vel of 

' ~  I dynamical intensity 
o 17o 2'o 3.0 4-0 

y 

o) 

Fig. 2. (a) The overall behavior of the diffracted intensity PH, 
in the Bragg diffracted direction, as a function of the degree 
of crystal imperfection. For this curve the incident angle of 
the X-rays is off the exact Bragg angle. (b) Enlargement of 
the shaded area in Fig. 2(a) for various values of the incident 
angle. 
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crystals become complicated (Kuriyama, 1969). In this 
paper, however, the imaginary parts of those functions 
are neglected except for the effective absorption coef- 
ficients appearing in the exponential function in (3.15). 
It follows from equation (3.15) that Po, the power in 
the transmitted direction, is given by 

[J°(Y)]2 (3-19) 
Po = W(x ,y )  x2+[jo(y)] 2 

and Pn, the power in the Bragg diffracted direction, by 

Pn= W(x,y )  1 + V~x2+[jo(y)] 2 , (3.20) 

where 

X 2 

W ( x , y ) =  (cos y - J o ( y ) ) 2 x 2 +  [jo(~y)] 2 + sin2y. (3.21) 

The IS(0)[ 2 terms have been excluded in the expressions 
of P0 and Pn. The effective absorption coefficient, 
Im[~ ], is also a function of x and y. In the above ex- 
pressions, however, the damping factor due to absorp- 
tion has been omitted. 

At first glance it is found that P0 becomes smaller 
with. increasing y, while Pn remains at a large value. 
This implies that the crystal distortion effect is more 
prominent in the Bragg diffracted direction than in 
the transmitted direction. Therefore, the quantity Pn 
is first studied as a function of x and y. To look at the 
overall behavior of Pn in the wide range of the degree 
of imperfection (y), the value of Pn is plotted as a 
function of y in Fig. 2(a), where the value of x is so 
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Fig. 3. Integrated intensity in the Bragg diffracted direction as a 
funct ion of  the degree of  crystal imperfection. Two dif- 
ferent ranges of  x are chosen; the shapes of these two curves 
are almost  identical, regardless of the ranges selected. Two 
levels of the kinematical intensity are shown, corresponding 
to the selected ranges of x. The dynamical  intensity level is 
added  schematically. 

chosen that the incident angle of the X-ray is slightly 
off the exact Bragg angle. The value of PH starts from 
zero and, though oscillating, reaches the value expected 
from the kinematical theory of diffraction. It should be 
remembered here that the PH is only a part of the re- 
sultant intensity, although it becomes dominant when 
y increases. Therefore, the resultant intensity starts at 
the dynamical value for a perfect crystal and reaches 
the kinematical value as the degree of imperfection 
increases. The dynamical intensity term [S(0)(i)[ 2 also 
changes as a function of y. 

The shaded area in Fig. 2(a) is enlarged to give 
Fig. 2(b), where the curves of PH are shown for various 
values of x(the incident angle). All the curves increase 
like a squared sinusoidal function when y is small, 
and except for every small x, oscillate around the 
kinematical value when y increases. These curves would 
explain the intensity change which might be observed 
in an idealized experiment where the incident X-rays 
were given by an ideal plane wave having no intrinsic 
momentum dispersion. In practice, however, momen- 
tum dispersion in the incoming wave is inescapable for 
optical reasons, being of the almost same magnitude as 
the range of dynamical diffraction. It may be, therefore, 
reasonable to obtain the intensity integrated over a 
certain range of incident angles. The value of Pr~ 
integrated over two different ranges of x are plotted as 
a function ofy  in Fig. 3. The shapes of these two curves 
are almost identical, regardless of the ranges selected. 
Therefore, the curves in Fig. 3 should be compared 
with the experimental result. In this Figure the level of 
the dynamical integrated intensity is added schematic- 
ally to the integrated value of PH to give the whole 
feature in intensity. The oscillatory behavior in the 
integrated intensity will be discussed in the next section. 

Fig. 4 shows the values of P0 integrated over the 
same two regions of x as for the integrated Pri. The 
vertical scale is arbitrary in the Figures. If  one uses the 
same scale for both Figures, the maximum value of 
the integrated P0 is almost negligible compared to the 
maximum value of the integrated PH. The integrated 
P0 quickly approaches zero as y increases. This again 
confirms that the imperfection effect appears more 
prominently in the Bragg diffracted beam than the 
transmitted beam. 

The emphasis so far has been on the dynamical 
diffraction processes for extinction. In studying rocking 
curves, that is, the behavior of the resultant intensity 
as a function of x, another aspect must be taken into 
consideration. When y is very small and the crystal 
therefore nearly perfect, the rocking curve width is 
determined mainly by the dynamical terms ]S(0)(i)] 2 
as expected. However, when y increases and the crystal 
becomes less perfect, the terms [S(1)(i,j)[ 2 dominate to 
determine the resultant rocking curve width. Since the 
Bragg diffracted propagator behaves like a free pro- 
pagator as y increases, Pn does not decrease to zero, 
but remains unchanged with increasing x. In such a 
case the important factor in determining the rocking 

A C 2 6 A  - 7 
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curve for an imperfect crystal is the geometrical fac- 
tor aij(0), which has been assumed to be independent 
of the value of qz. 

The quantity au(0) is the approximate representation 
of aij(n) which has originally been defined (Kuriyama 
& Miyakawa, 1969) by 

N(z)-- 
a,j(n)=[N(z)] -1 ~ exp [--i{~j(l]t)--cq(kt)}lz] 

l 
x exp [-inqzlz], (3.22) 

where N(z) is the total number of unit cells in the z 
direction, lx is the position of the /tit cell measured 
from the X-ray entry surface of the crystal, and n is 
an integer. If  it were not for qz or n, the equation (3.22) 
would only be the size function and vanish unless 
aj(l]t) is equal to ~(kt), since N(z) is quite large. 
However, in the present problem where the crystal is 
imperfect, the equation (3.22) is not given by a simple 
function, but becomes a function which is familiar in 
the kinematical line broadening problems of distorted 
crystals. 

If  aij(n)'s are used instead of aij(0) to derive the 
more rigorous expression for (3.15), the quantities 
sin ( I t .  Aq) and cos (H .  Aq) in (3.15) are replaced by 
the lattice sum 

[N(z)] -1 ~ exp [-i{aa(kt)-o~(kt)}lz] 
tz 

sin'[ ( H  Aq COS qzlz) (3.23) COS) " 

This determines the effective range of ~j(Et)-c~(k~), 
even for a set of modes for which i#j, to give non- 
vanishing values for (3.23). In the ideal thickness 
vibration, where Et = kt, this effective range determines 
the range of x, that is the range of the incident angle, 
over which the resultant intensity does not vanish. In 
other words, this range is the rocking curve width. As 
y increases the profile of the rocking curve is determined 
by the product of the value of (3.23) and PH as a 
function of x (the incident angle). 

4. Discussion 

Primary and secondary extinctions have been studied 
as a consequence of disruption of the dynamic inter- 
action processes in diffraction. Neither the mosaic 
block models nor the statistical treatments of imper- 
fections have been used. Unlike the existing extinction 
theory (Darwin, 1914a, b; Zachariasen, 1945; James, 
1954) where intensity transfer through independent 
mosaics is tile basic process, the present treatment 
permits dynamical amplitudes to change in response 
to disturbances in dynamical interactions by imper- 
fections. The extinction in diffracted intensities as 
treated in this paper is thus caused solely by inhomo- 
geneous strains in a single coherent domain. 

We have idealized crystal imperfections by con- 
sidering the example of thickness vibrations. This 
idealization is undoubtedly too narrow. There are 
many other modes required to describe real crystal 

imperfections; especially the modes for which qt:#0 
cannot be neglected. Although the fundamental pro- 
cesses in diffraction for the qt#O mode are well de- 
cribed in a similar way to the case treated in the present 
paper, the resultant intensities are expected to be 
smoother than those in the Figures. The simultaneous 
existence of various qt values give uncertainty to the 
value of y as well as kt (final states). Therefore the 
quantity to be compared with experimental results 
should be resultant intensity integrated over the un- 
certainty ranges of y and ~t. This procedure certainly 
smears out the oscillatory behavior observed in the 
Figures, giving a curve similar to that presented in 
Fig. 1. The resultant intensity in the Bragg diffacted 
direction starts at the dynamical value, increases like 
sine squared of y, the imperfection parameter, and 
finally reaches the kinematical value. In view of the 
results of the present discussion, a qualitative state- 
ment in a previous paper (§5g, Kuriyama, 1969) should 
be modified. The diffracted intensity may exceed the 
kinematical value (about 1.5 times) before settling 
down at the kinematical value. 

The authors wish to thank Dr Haruta for his kind 
permission to reproduce his figure as Fig. 1. 

A P P E N D I X  

The scattering amplitude of a crystal undergoing an 
ideal thickness vibration is given (Kuriyama & Miya- 
kawa, 1969) by 

S(k',k)=(2coe)-lJ(e)k-e)k')6(kt+ K t -  k't) 
× [ES(O)(i)+ ~ SO)(i,j)], 

i (i ¢j) 
(AI )  

~_ i I I i 

Ixl<lO 

0 I "0  2 ' 0  3"0  4 0  
Y 

Fig.4. Integrated values of P0 (in the transmitted direction) as 
a function of the degree of crystal imperfection. Two dif- 
ferent ranges of x are chosen. 
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where 

S(°)(i) = [1 + 2iL U (H)]((zi + Kz + 'z)F~(kt ;i) 
× exp [iL(ai+ Kz-k 'z)]  (A2a) 

and 

S(1)(i,j)=iLV(H)Frx_K(kt;i) exp [iL(aj+ Kz-k 'z)]  . 
(AZb) 

The symbols used in the above equations are 

U(I-i)=(o~i+kz)-lv(-H)[cos (H. Aq) 
- J0 (H .  Aq)]Fi_i(kt;i) (A3) 

and 

V(H) = o'tj(0)v(- HSKo + H5HK)[f+(K; i,j) 

{cos (H. Aq)-J0(H. Aq)} 

- i f ( K ; i , j )  sin (H. Aa)]. (A4) 

In these equations K takes on the values of 0 and H 
(a single Bragg reflection condition), and F~(k~;i) are 
the corrected dynamical field functions in the initial 
state defined by (3.16) and (3.17). Other notations 
except f± have been defined in the text. 

The important quantities aref±(K; i,j) describing the 
degree of disruption of dynamical interactions. They 
are defined (Kuriyama, 1969; Kuriyama & Miyakawa, 
1969) by 

f±  (O;i,j)= (fly + kz)[Y2(a, + Hz) + (2(flj + Kz)]/A(flj) 
(A5) 

f±(H; i,j) = (fls + Hz + fez + Hz)[f2(flt) +_ f2(as)]/A(fli), (A6) 

where 

g2(ai)= 1 [e (k)+( -  1)iR(k)] (A7) 
T 

f2(o~i+ Hz)= - [e ( k ) - ( -1 )~R(k ) ]  , (A8) 

A(cq) = (2~0(- 1)i2R(k), (A9) 

and replacing as, e(k) and R(k) by fl,, ~/(~) and R(~), 
respectively, gives the quantities for flj. Here photons 
in the final state carry the momentum 

k'=[~+K (A10) 

with K = 0 for the transmitted direction and K = H for 
the Bragg diffracted direction. The momentum of the 
photons in the initial state is k, which in general is 
not equal to ~. The quantity fl is the solution to the 
dispersion equation with the fixed [:t for the final states. 

In the ideal thickness vibration k is equal to k 
because qt = 0. Using equations (3.12), (3.13) and (A5) 
to (A9), we obtain, for i # j  

and 

f+(O;i,j)= - f + ( H ; i , j ) = ( -  1)~ R (k) 

f - (O;i , j )= - f - ( H ; i , j ) =  - 1. 

(A11) 

(A12) 
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